Understanding TCP
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The concept and ideas behind it

No header bit definitions
No DoS protection stuff
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What is TCP

e Transmission Control Protocol
e Defined in RFC793 (in 1981!)

e Based on , A Protocol for Packet Network
Intercommunication” by Vinton G. Cerf, Robert E.
Kahn (in 1974)

e Updated over the years by a large number of
additional RFC’s
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 TCP is the primary protocol on the Internet

 That is what | will talk about today
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Purpose of TCP

e Provide a reliable data channel

e |t tries hard to deliver the data

* And tells the application if it can‘t

dd1 Suipueisiapun

e Sequential and in-order data stream

* |t ensures that A is delivered before B

e Over alossy and ,dumb’ network (IP)

 The Internet everywhere and anytime
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Smart vs. Dumb (1)

 Two network types exist

e Smart network with dumb terminals
e Terminal is just a presentation device

e All the logic and data handling is in the network

e Centralized approach

e Everything has to be implemented and prepared in the
network
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e Examples:

e Telephony network
e Compuserve, AOL, MSN, Minitel
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Smart vs. Dumb (2)

e Dumb network with smart terminals
 Terminal is also doing data handling

e The network is just a dumb packet transporter
e Stateless to any packet flows
 Network is usage agnostic
e Every packet is just a packet like all the others
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e Decentralized approach

 The terminal has to implement the data handling itself
 End to end principle

e Examples:
* Internet
e X.21 network (partially stateful)
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Dumb network (1)

 The terminal doesn‘t know anything about the
network

 No idea on the speed and bandwidth
 No idea on the delays and round trip times
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e Absolutely nothing!

e The network is a black box

 TCP has to discover everything by itself

e Through observing the network
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Dumb network (2)

e |P packets can get lost at any time
e Queue overflows in switches and routers
e Bit errors or collisions on Layer 2
e Lost link, broken line, ...
 Anything
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e Lost packets are not reported!

e Packet loss comes with these properties
e Single packet is lost
A whole number (burst) of packets is lost
e Packets are reordered (B before A)
 No packets make it through
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Transmission Control Protocol

e |t's the job of TCP to hide all these problems
e User and application don‘t have to care
e Avoid re-inventing the wheel for every application
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e TCP hides a lot of complexity as you will find
out
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TCP overview

 TCP consists of a few primary mechanisms
 Acknowledgement system
e Loss detection system

e Loss recovery and retransmit system
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e Bandwidth & congestion control
* Timeouts

e More detail on each in the next slides
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Acknowledgement system (1)

e The remote terminal must tell when it received
data from us

e |t has to send an acknowledgement (,,| got the
data“)
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Data: ABC
/ >
<\ /.

ACK: 3 Bytes
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Acknowledgement system (2)

e Sequence space numbering in each
direction

e So that both terminals know where they are

 TCP header contains two fields
e Start sequence number of this packet

e Acknowledgement sequence number of the latest (in-
order) received packet
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e |t takes a full RTT for us to know whether our
data packet was received

* And it takes longer to find out that it
got lost
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Loss detection system (1)

e How do we find out that the data packet was
lost?

e Two methods exist
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* See next slides

André Oppermann <oppermann@networx.ch> Page 12



Loss detection system (2)

* Whenever we send a data packet we start a
timer
e When it expires we can assume the packet got lost

 The data packet may have made it but the ACK got
lost...
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e The timer is dynamically adjusted based on the
measured RTT
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Loss detection system (3)

 Four ACK’s with the same ACK number
e We only get an ACK when a packet was received

e We can assume the data packet at the ACK number
got lost
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 May have been severe reordering as well...
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Loss recovery and retransmit system (1)

 The sender keeps a copy of the data it has sent

e Until it is acknowledged
e Called a send buffer

* When a data packet is lost, it can be sent again
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Loss recovery and retransmit system (2)

 The receiver also has a buffer for incoming
data

e To store the data until the application reads it

e To hold data when a packet before it got lost (or
reordered)
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Bandwidth & congestion control (1)

 TCP can‘t just blast out the data packets at
maximum speed

e QOverflows buffers in switches and routers
 Many packet losses
e There are other TCP terminals too
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 No idea how fast the network is all the way to the
receiver
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Bandwidth & congestion control (2)

 \We need something that ensures

e Fairness for multiple TCP senders

e Careful capacity probing

e Conservation principle (overall efficiency)
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* Measuring the ACK’s gives two feedbacks
e Packet loss
e Changein RTT
e Both are delayed feedbacks (at least 1 RTT
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Bandwidth & congestion control (3)

 Congestion window

e To control how fast TCP can send new data

e Limits the amount of unacknowledged data (inflight)
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e AIMD algorithm

e Additive increase
e For every received ACK two new packets are sent
e Exponential growth

 Multiplicative decrease

* On a lost packet the window is reduced to 50%
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Bandwidth & congestion control (4)

e Graph of AIMD
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Bandwidth & congestion control (5)

e Using only AIMD is inefficient

e Sawtooth effect

 We want better congestion avoidance
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e TCP has two send modes
e Slow start (probing phase)

e Additive increase

e Congestion avoidance
 One additional packet per full RTT
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Bandwidth & congestion control (6)

 Graph of slow start and congestion avoidance
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Bandwidth & congestion control (7)

e Low RTT scales much faster
e Faster reaction times

e Unfairness when low and high RTT transfer share
the same link
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 Throughput vs. goodput

congestion window

time

André Oppermann <oppermann@networx.ch> Page 23




Timeouts

 TCP tries to be realiable but can‘t guarantee to
transfer all data

e Network disconnect
e Receiver crashed...
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* |t has to know when to give up
e TCP tries to send the data again
e Each time the interval increases
e Until there is only little hope

e After approx. 42 minutes
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TCP improvements (1)

* Delayed acknowledgements
e To reduce the ACK traffic and number of packets

* Nagle algorithm
 Only have one packet in flight
e For interactive applications (telnet/ssh)

* Timestamps
 Improved RTT measurement

* SYN cookies
e Avoid state tracking for incoming connections

* ECN =
* Explicit congestion notification (by router) [FE s
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TCP improvements (2)

* SACK

e Selective Acknowledgement

e Reports which data is received after a lost one

e Better loss recovery algorithms
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TCP improvements (3)

e Better congestion control algorithms
e Linux uses , CUBIC”*
 Windows 7 uses ,,Compound TCP*
e Some more proposed
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New Reno, CUBIC

Compound, lllinois
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Tuning TCP

e Socket buffer sizing
 Enable window sizing
 Enable timestamps
 Enable SACK
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Delay * Bandwidth product

e Defines how much bandwidth can be used
e Send buffer keeps data for retransmit
e Send buffer limits how much data can be inflight

e Receive buffer limits how much data can be
received until the application reads the data
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______loms __1100ms__|200ms

10Mbit 0.02MB 0.2MB 0.3MB
100Mbit 0.2MB 1.2MB 2.5MB
1Gbit 1.2MB 13MB 25MB
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Tuning the network for TCP

e Active queue management

e RED (random early detection)
* Drop packets before the queue is full

* Drop only one packet of any concurrent TCP connection
(statistically)
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* Properly sized interface buffers
 Means large buffers

e Delay before loss
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Questions?

e Don‘t hesitate to contact me!

 Thank you for your attention
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 |'m available as a consultant and network

engineer who can look at your situation in
detail

 Email: oppermann@networx.ch
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