Understanding TCP

-
>
Q.
()
S
(%]
—+
Q
>
Q.
>
(0]
—
(@)
0

The concept and ideas behind it

No header bit definitions
No DoS protection stuff

André Oppermann <oppermann@networx.ch> Page 1

What is TCP

e Transmission Control Protocol
e Defined in RFC793 (in 1981!)

e Based on , A Protocol for Packet Network
Intercommunication” by Vinton G. Cerf, Robert E.
Kahn (in 1974)

e Updated over the years by a large number of
additional RFC’s

dd1 Suipueisiapun

 TCP is the primary protocol on the Internet

 That is what | will talk about today

André Oppermann <oppermann@networx.ch> Page 2

Purpose of TCP

e Provide a reliable data channel

e |t tries hard to deliver the data

* And tells the application if it can‘t

dd1 Suipueisiapun

e Sequential and in-order data stream

* |t ensures that A is delivered before B

e Over alossy and ,dumb’ network (IP)

 The Internet everywhere and anytime

André Oppermann <oppermann@networx.ch> Page 3

Smart vs. Dumb (1)

 Two network types exist

e Smart network with dumb terminals
e Terminal is just a presentation device

e All the logic and data handling is in the network

e Centralized approach

e Everything has to be implemented and prepared in the
network

dd1 Suipueisiapun

e Examples:

e Telephony network
e Compuserve, AOL, MSN, Minitel

André Oppermann <oppermann@networx.ch> Page 4

Smart vs. Dumb (2)

e Dumb network with smart terminals
 Terminal is also doing data handling

e The network is just a dumb packet transporter
e Stateless to any packet flows
 Network is usage agnostic
e Every packet is just a packet like all the others

dd1 Suipueisiapun

e Decentralized approach

 The terminal has to implement the data handling itself
 End to end principle

e Examples:
* Internet
e X.21 network (partially stateful)

< . ECHOBELLY
-"”“E‘,'R“,?% PETE DROGE

EP IME THE PRIMITIVES
iy - GIGOLO AUNTS \

F THE LU 3
. GREEN .-
André Oppermann <oppermann@networx.ch> Page 5 £ BEDRK TR

Dumb network (1)

 The terminal doesn‘t know anything about the
network

 No idea on the speed and bandwidth
 No idea on the delays and round trip times

dJl Su!puelsJapun

e Absolutely nothing!

e The network is a black box

 TCP has to discover everything by itself

e Through observing the network

André Oppermann <oppermann@networx.ch> Page 6

Dumb network (2)

e |P packets can get lost at any time
e Queue overflows in switches and routers
e Bit errors or collisions on Layer 2
e Lost link, broken line, ...
 Anything

dd1 Suipueisiapun

e Lost packets are not reported!

e Packet loss comes with these properties
e Single packet is lost
A whole number (burst) of packets is lost
e Packets are reordered (B before A)
 No packets make it through

André Oppermann <oppermann@networx.ch> Page 7

Transmission Control Protocol

e |t's the job of TCP to hide all these problems
e User and application don‘t have to care
e Avoid re-inventing the wheel for every application

dd1 Suipueisiapun

e TCP hides a lot of complexity as you will find
out

André Oppermann <oppermann@networx.ch> Page 8

TCP overview

 TCP consists of a few primary mechanisms
 Acknowledgement system
e Loss detection system

e Loss recovery and retransmit system

dd1 Suipueisiapun

e Bandwidth & congestion control
* Timeouts

e More detail on each in the next slides

André Oppermann <oppermann@networx.ch> Page 9

Acknowledgement system (1)

e The remote terminal must tell when it received
data from us

e |t has to send an acknowledgement (,,| got the
data“)

dd1 Suipueisiapun

Data: ABC
/ >
<\ /.

ACK: 3 Bytes

André Oppermann <oppermann@networx.ch> Page 10

Acknowledgement system (2)

e Sequence space numbering in each
direction

e So that both terminals know where they are

 TCP header contains two fields
e Start sequence number of this packet

e Acknowledgement sequence number of the latest (in-
order) received packet

dd1 Suipueisiapun

e |t takes a full RTT for us to know whether our
data packet was received

* And it takes longer to find out that it
got lost

André Oppermann <oppermann@networx.ch> Page 11

Loss detection system (1)

e How do we find out that the data packet was
lost?

e Two methods exist

dd1 Suipueisiapun

* See next slides

André Oppermann <oppermann@networx.ch> Page 12

Loss detection system (2)

* Whenever we send a data packet we start a
timer
e When it expires we can assume the packet got lost

 The data packet may have made it but the ACK got
lost...

dJl Su!puelsJapun

e The timer is dynamically adjusted based on the
measured RTT

% 2 Tk %

André Oppermann <oppermann@networx.ch> Page 13

Loss detection system (3)

 Four ACK’s with the same ACK number
e We only get an ACK when a packet was received

e We can assume the data packet at the ACK number
got lost

dd1 Suipueisiapun

 May have been severe reordering as well...

o ——

GHI +— /
JKL o—
MN T—
ACK:3 €
ACK:3 &
ACK:3 €
ACK: 3 €¢—

André Oppermann <oppermann@networx.ch>

Page 14

Loss recovery and retransmit system (1)

 The sender keeps a copy of the data it has sent

e Until it is acknowledged
e Called a send buffer

* When a data packet is lost, it can be sent again

JKL
MN

ACK: 3 €&

André Oppermann <oppermann@networx.ch>

| [aocr—— e
Y —

o

Page 15

dd1 Suipueisiapun

Loss recovery and retransmit system (2)

 The receiver also has a buffer for incoming
data

e To store the data until the application reads it

e To hold data when a packet before it got lost (or
reordered)

c
>
o
(0]
=
%]
—
QU
>
o
>
oQ
—
(@)
O

—!B ABC " sl aBC !
Yo P DEF/* -

GHI — —» GHI
JKL ¢— —» JKL
MN - —» MN
ACK: 3 4—

André Oppermann <oppermann@networx.ch> Page 16

Bandwidth & congestion control (1)

 TCP can‘t just blast out the data packets at
maximum speed

e QOverflows buffers in switches and routers
 Many packet losses
e There are other TCP terminals too

dd1 Suipueisiapun

 No idea how fast the network is all the way to the
receiver

André Oppermann <oppermann@networx.ch> Page 17

Bandwidth & congestion control (2)

 \We need something that ensures

e Fairness for multiple TCP senders

e Careful capacity probing

e Conservation principle (overall efficiency)

dd1 Suipueisiapun

* Measuring the ACK’s gives two feedbacks
e Packet loss
e Changein RTT
e Both are delayed feedbacks (at least 1 RTT

André Oppermann <oppermann@networx.ch> Page 18

Bandwidth & congestion control (3)

 Congestion window

e To control how fast TCP can send new data

e Limits the amount of unacknowledged data (inflight)

dd1 Suipueisiapun

e AIMD algorithm

e Additive increase
e For every received ACK two new packets are sent
e Exponential growth

 Multiplicative decrease

* On a lost packet the window is reduced to 50%

André Oppermann <oppermann@networx.ch> Page 19

Bandwidth & congestion control (4)

e Graph of AIMD

dd1 Suipueisiapun

real bandwidth

congestion window

time

André Oppermann <oppermann@networx.ch> Page 20

Bandwidth & congestion control (5)

e Using only AIMD is inefficient

e Sawtooth effect

 We want better congestion avoidance

dd1 Suipueisiapun

e TCP has two send modes
e Slow start (probing phase)

e Additive increase

e Congestion avoidance
 One additional packet per full RTT

André Oppermann <oppermann@networx.ch> Page 21

Bandwidth & congestion control (6)

 Graph of slow start and congestion avoidance

dd1 Suipueisiapun

real bandwidth

congestion window

time

André Oppermann <oppermann@networx.ch> Page 22

Bandwidth & congestion control (7)

e Low RTT scales much faster
e Faster reaction times

e Unfairness when low and high RTT transfer share
the same link

dd1 Suipueisiapun

 Throughput vs. goodput

congestion window

time

André Oppermann <oppermann@networx.ch> Page 23

Timeouts

 TCP tries to be realiable but can‘t guarantee to
transfer all data

e Network disconnect
e Receiver crashed...

dd1 Suipueisiapun

* |t has to know when to give up
e TCP tries to send the data again
e Each time the interval increases
e Until there is only little hope

e After approx. 42 minutes

André Oppermann <oppermann@networx.ch> Page 24

TCP improvements (1)

* Delayed acknowledgements
e To reduce the ACK traffic and number of packets

* Nagle algorithm
 Only have one packet in flight
e For interactive applications (telnet/ssh)

* Timestamps
 Improved RTT measurement

* SYN cookies
e Avoid state tracking for incoming connections

* ECN =
* Explicit congestion notification (by router) [FE s

André Oppermann <oppermann@networx.ch> Page 25

dd1 Suipueisiapun

TCP improvements (2)

* SACK

e Selective Acknowledgement

e Reports which data is received after a lost one

e Better loss recovery algorithms

Y p—— =S

dd1 Suipueisiapun

GHI — —» GHI
JKL ¢— —» JKL
MN r' —» MN
ACK: 3 €4

ACK:3 and 7 to 14 €4—

André Oppermann <oppermann@networx.ch> Page 26

TCP improvements (3)

e Better congestion control algorithms
e Linux uses , CUBIC”*
 Windows 7 uses ,,Compound TCP*
e Some more proposed

dd1 Suipueisiapun

New Reno, CUBIC

Compound, lllinois

1sea |- 4 1sea |- 4
1eoa | 4 1088 |
see 4 see 4
a L L . . a . . n .
a 1ao D) ECE) 200 sea) [CE] ECE) 260 260 sea

André Oppermann <oppermann@networx.ch> Page 27

Tuning TCP

e Socket buffer sizing
 Enable window sizing
 Enable timestamps
 Enable SACK

c
>
o
(0]
=
%]
—
QU
>
o
>
oQ
—
(@)
O

André Oppermann <oppermann@networx.ch> Page 28

Delay * Bandwidth product

e Defines how much bandwidth can be used
e Send buffer keeps data for retransmit
e Send buffer limits how much data can be inflight

e Receive buffer limits how much data can be
received until the application reads the data

dd1 Suipueisiapun

—
!\ — RTT * Bandwidth !

______loms __1100ms__|200ms

10Mbit 0.02MB 0.2MB 0.3MB
100Mbit 0.2MB 1.2MB 2.5MB
1Gbit 1.2MB 13MB 25MB

André Oppermann <oppermann@networx.ch> Page 29

Tuning the network for TCP

e Active queue management

e RED (random early detection)
* Drop packets before the queue is full

* Drop only one packet of any concurrent TCP connection
(statistically)

dd1 Suipueisiapun

* Properly sized interface buffers
 Means large buffers

e Delay before loss

André Oppermann <oppermann@networx.ch> Page 30

Questions?

e Don‘t hesitate to contact me!

 Thank you for your attention

dd1 Suipueisiapun

 |'m available as a consultant and network

engineer who can look at your situation in
detail

 Email: oppermann@networx.ch

André Oppermann <oppermann@networx.ch> Page 31

